
ll
OPEN ACCESS
Protocol
A universal AutoScore framework to develop
interpretable scoring systems for predicting
common types of clinical outcomes
Feng Xie, Yilin Ning,

Mingxuan Liu, ...,

Roger Vaughan,

Bibhas Chakraborty,

Nan Liu

liu.nan@duke-nus.edu.sg

Highlights

A machine learning

framework for

automated

development of

clinical risk scores

A common workflow

to handle binary,

survival, and ordinal

outcomes

Detailed

demonstration of R

package usage using

publicly shared

clinical data

Rich statistics and

visualizations to
facilitate model

evaluation and

application

Xie et al., STAR Protocols 4,

102302
The AutoScore framework can automatically generate data-driven clinical scores in various

clinical applications. Here, we present a protocol for developing clinical scoring systems for

binary, survival, and ordinal outcomes using the open-source AutoScore package. We describe

steps for package installation, detailed data processing and checking, and variable ranking. We

then explain how to iterate through steps for variable selection, score generation, fine-tuning,

and evaluation to generate understandable and explainable scoring systems using data-driven

evidence and clinical knowledge.

Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional

guidelines for laboratory safety and ethics.
June 16, 2023 ª 2023 The

Authors.

https://doi.org/10.1016/

j.xpro.2023.102302

mailto:liu.nan@duke-nus.edu.sg
https://doi.org/10.1016/j.xpro.2023.102302
https://doi.org/10.1016/j.xpro.2023.102302
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xpro.2023.102302&domain=pdf


Protocol

A universal AutoScore framework to develop
interpretable scoring systems for predicting common
types of clinical outcomes

Feng Xie,1,2,12,13,14 Yilin Ning,1,13 Mingxuan Liu,1 Siqi Li,1 Seyed Ehsan Saffari,1,2 Han Yuan,1

Victor Volovici,3,4 Daniel Shu Wei Ting,1,5,6 Benjamin Alan Goldstein,2,7 Marcus Eng Hock Ong,2,8,9

Roger Vaughan,1 Bibhas Chakraborty,1,2,7,10 and Nan Liu1,2,6,11,15,*

1Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore 169857, Singapore

2Programme in Health Services and Systems Research, Duke-NUS Medical School, Singapore 169857, Singapore

3Department of Neurosurgery, Erasmus MC University Medical Center, 3015 GD Rotterdam, the Netherlands

4Department of Public Health, Erasmus MC, 3015 GD Rotterdam, the Netherlands

5Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 168751, Singapore

6SingHealth AI Office, Singapore Health Services, Singapore 168582, Singapore

7Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27710, USA

8Health Services Research Centre, Singapore Health Services, Singapore 169856, Singapore

9Department of Emergency Medicine, Singapore General Hospital, Singapore 169608, Singapore

10Department of Statistics and Data Science, National University of Singapore, Singapore 117546, Singapore

11Institute of Data Science, National University of Singapore, Singapore 117602, Singapore

12Present address: School of Medicine, Stanford University, Stanford, CA 94305, USA

13These authors contributed equally

14Technical contact: xief@u.duke.nus.edu

15Lead contact

*Correspondence: liu.nan@duke-nus.edu.sg
https://doi.org/10.1016/j.xpro.2023.102302

SUMMARY

The AutoScore framework can automatically generate data-driven clinical scores
in various clinical applications. Here, we present a protocol for developing
clinical scoring systems for binary, survival, and ordinal outcomes using the
open-source AutoScore package. We describe steps for package installation,
detailed data processing and checking, and variable ranking. We then explain
how to iterate through steps for variable selection, score generation, fine-tuning,
and evaluation to generate understandable and explainable scoring systems us-
ing data-driven evidence and clinical knowledge.
For complete details on the use and execution of this protocol, please refer to Xie
et al. (2020),1 Xie et al. (2022)2, Saffari et al. (2022)3 and the online tutorial
https://nliulab.github.io/AutoScore/.

BEFORE YOU BEGIN

Scoring systems are widely used in clinical settings for the convenient assessment of individual risk

and may provide an easy-to-use tool to underpin clinical decision-making.4–7 For example, the

well-known Framingham hypertension risk score uses seven routinely collected variables to identify

high-risk patients for early intervention and efficient management, including lifestyle change

programs and blood pressure-lowering treatment.8,9 The LACE index10 uses basic information on

current inpatient stay, previous visits to emergency departments and comorbidity to identify pa-

tients with an elevated risk of adverse outcomes post-discharge for additional care. With the

STAR Protocols 4, 102302, June 16, 2023 ª 2023 The Authors.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1

ll
OPEN ACCESS

mailto:xief@u.duke.nus.edu
mailto:liu.nan@duke-nus.edu.sg
https://doi.org/10.1016/j.xpro.2023.102302
https://nliulab.github.io/AutoScore/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xpro.2023.102302&domain=pdf
http://creativecommons.org/licenses/by/4.0/


increased availability of data and analytical tools, there have been ongoing efforts to update existing

scores11 and to devise new clinical risk scores for a wide range of clinical applications.4,12

Scoring systems are inherently easily interpretable, as they represent linear classificationmodels that

only require users to add, subtract and multiply a few numbers to make a prediction.13 The facile

interpretability may support clinical decision-making, where doctors can easily understand in which

risk category an individual patient falls.14–17 Compared with complex post-hoc explanations in ma-

chine learning, clinicians prefer intrinsically interpretable and transparent models, especially those

used at the bedside.18–21

AutoScore1 was developed as an interpretable machine learning-based automatic clinical score

generator. The framework consists of six modules: (1) variable ranking with machine learning, (2) var-

iable transformation, (3) score derivation, (4) model selection, (5) domain knowledge-based score

fine-tuning, and (6) performance evaluation. Using AutoScore, users can easily generate data-driven

clinical scores while concomitantly incorporating clinical expertise and practical considerations.22–26

Besides binary outcomes,1 AutoScore has been methodologically extended to survival outcomes,2

unbalanced binary data27 and ordinal outcomes.3 Themodularized structure allows AutoScore to be

integrated with more advanced interpretable machine learning methods (e.g., the Shapley variable

importance cloud28) for improved robustness, interpretability and transparency in the risk score

development.29

This protocol demonstrates the unified AutoScore framework for developing interpretable scoring

systems for three common types of clinical outcomes: binary, survival and ordinal, which has been

implemented as an easy-to-use R package.30 This protocol is accompanied by an open-source co-

debase and simulated datasets demonstrating the whole score generation process. The protocol

provides step-by-step instructions for users with diverse backgrounds (and possibly limited experi-

ence in programming) to conveniently develop scoring systems in different applications.

Software prerequisites and data requirement

Before launching AutoScore, pre-installed R (>=3.5.0)31 and other R packages described in the key

resources table are required. Detailed prerequisites and sample data format can be found in our on-

line guidebook (https://nliulab.github.io/AutoScore/).

This protocol can be applied to tabular static data with binary, ordinal or survival outcomes; each

demonstrated using a simulated clinical dataset with 20,000 samples. The example outcomes

were inpatient mortality, a 3-category compound indicator of long inpatient stay and inpatient

mortality, and 90-day survival in the intensive care unit, respectively, with simulated information

on patient demographics, vital signs, and laboratory tests. AutoScore expects the input data to

be complete without missing entries. Under certain circumstances, missing values in predictors

(but not the outcome) may be automatically processed by AutoScore as an additional category. Still,

instructions must be followed to check the data for missingness, as detailed in our online guidebook.

This protocol focuses on the AutoScore application for complete data.

Prepare a clinical question

Users should prepare a valid clinical question by consulting with clinicians and health profes-

sionals.32 Users should ensure that the target outcome is well-defined (either computationally using

existing information or through manual labeling of the training dataset) and that data is available on

clinically relevant predictors for the outcome. It is also important to identify who the likely end users

will be and, thus, the most appropriate potential channels for the model output.32–34 Early engage-

ment with an end-user group (e.g., practicing clinicians) can help refine the research question and

identify real-world clinical pathways. This ensures that the model outputs can be ultimately seam-

lessly integrated into existing clinical workflows.

ll
OPEN ACCESS

2 STAR Protocols 4, 102302, June 16, 2023

Protocol

https://nliulab.github.io/AutoScore/


KEY RESOURCES TABLE

STEP-BY-STEP METHOD DETAILS

As detailed in this section, the AutoScore framework is implemented in several general steps. We

use Roman Numbers (i.e., (i), (ii), etc.) to denote general AutoScore steps, which often consist of

several protocol steps (indicated by digits 1, 2, etc.). Table 1 provides an overview of AutoScore

steps and corresponding functions in the R package, and in the following subsections, we will

describe the installation instruction and usage.

Install the package and the prerequisites

Timing: < 5 min

This step describes how to install the AutoScore package, which automatically installs all depen-

dencies in the key resources table.

1. Install the stable version of AutoScore from CRAN:

or the latest (development) version from GitHub:

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

R (>=3.5.0) The R Foundation RRID: SCR_001905 https://www.r-project.org

Rstudio RStudio Team RRID: SCR_000432 https://www.rstudio.com/

AutoScore This paper https://github.com/nliulab/AutoScore
https://nliulab.github.io/AutoScore/
https://CRAN.R-project.org/package=AutoScore

randomForest The R Foundation https://CRAN.R-project.org/package=randomForest

randomForestSRC The R Foundation https://CRAN.R-project.org/package=randomForestSRC

survival The R Foundation https://CRAN.R-project.org/package=survival

ordinal The R Foundation https://CRAN.R-project.org/package=ordinal

pROC The R Foundation https://CRAN.R-project.org/package=pROC

coxed The R Foundation https://CRAN.R-project.org/package=coxed

Hmisc The R Foundation https://CRAN.R-project.org/package=Hmisc

survAUC The R Foundation https://CRAN.R-project.org/package=survAUC

survminer The R Foundation https://CRAN.R-project.org/package=survminer

tableone The R Foundation https://CRAN.R-project.org/package=tableone

car The R Foundation https://CRAN.R-project.org/package=car

dplyr The R Foundation https://CRAN.R-project.org/package=dplyr

tidyr The R Foundation https://CRAN.R-project.org/package=tidyr

magrittr The R Foundation https://CRAN.R-project.org/package=magrittr

rlang The R Foundation https://CRAN.R-project.org/package=rlang

knitr The R Foundation https://CRAN.R-project.org/package=knitr

ggplot2 The R Foundation https://CRAN.R-project.org/package=ggplot2

plotly The R Foundation https://CRAN.R-project.org/package=plotly

> install.packages("AutoScore")

> install.packages("devtools") # If not already installed

> library(devtools)

> install_github(repo = "nliulab/AutoScore", build_vignettes = TRUE)

ll
OPEN ACCESS

STAR Protocols 4, 102302, June 16, 2023 3

Protocol

https://www.r-project.org
https://www.rstudio.com/
https://github.com/nliulab/AutoScore
https://nliulab.github.io/AutoScore/
https://CRAN.R-project.org/package=AutoScore
https://cran.r-project.org/package=randomForest
https://cran.r-project.org/package=randomForestSRC
https://cran.r-project.org/package=survival
https://cran.r-project.org/package=ordinal
https://cran.r-project.org/package=pROC
https://cran.r-project.org/package=coxed
https://cran.r-project.org/package=Hmisc
https://cran.r-project.org/package=survAUC
https://cran.r-project.org/package=survAUC
https://cran.r-project.org/package=tableone
https://cran.r-project.org/package=car
https://cran.r-project.org/package=dplyr
https://cran.r-project.org/package=tidyr
https://cran.r-project.org/package=magrittr
https://cran.r-project.org/package=rlang
https://cran.r-project.org/package=knitr
https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=plotly


Table 1. Definitions and arguments for key functions in AutoScore package

Functions

Name(s) Arguments Usage Descriptions

Pipeline functions

AutoScore_rank()
AutoScore_rank_Survival()
AutoScore_rank_Ordinal()

train_set A processed data.frame that contains
data to be analyzed, for training.

AutoScore STEP(i): Rank variables
with machine learning (AutoScore
Module 1)ntree Number of trees in the random

forest (Default: 100).

method
<binary only>

Method for ranking. Options: 1. ‘rf‘ –
random forest-based ranking (default), 2.
‘auc‘ – AUC-based ranking (required
validation set). For "auc", univariate
models will be built based on the train
set, and the variable ranking is
constructed via the AUC performance
of corresponding univariate models
on the validation set (‘validation_set‘).

validation_set
<binary only>

A processed data.frame that contains
data to be analyzed, only for AUC-
based ranking.

AutoScore_parsimony()
AutoScore_parsimony_Survival()
AutoScore_parsimony_Ordinal()

train_set A processed data.frame that contains
data to be analyzed, for training.

AutoScore STEP(ii): Select the best
model with parsimony plot
(AutoScore Modules 2 + 3+4)validation_set A processed data.frame that contains

data for validation purpose.

rank The ranking result generated from
AutoScore STEP(i).

max_score Maximum total score (Default: 100).

n_min Minimum number of selected variables
(Default: 1).

n_max Maximum number of selected variables;
default 20.

cross_validation If set to TRUE, cross-validation would
be used for generating parsimony plot,
which is suitable for small-size data.
Default to FALSE.

fold The number of folds used in cross
validation (Default: 10). Available if
cross_validation = TRUE.

categorize Methods for categorize continuous
variables. Options include "quantile"
or "kmeans" (Default: "quantile").

quantiles Predefined quantiles to convert continuous
variables to categorical ones. (Default:
c(0, 0.05, 0.2, 0.8, 0.95, 1)) Available if
categorize = "quantile".

max_cluster The max number of cluster (Default: 5).
Available if categorize = "kmeans".

do_trace If set to TRUE, all results based on each
fold of cross-validation would be printed
out and plotted (Default: FALSE). Available
if cross_validation = TRUE.

auc_lim_min Min y_axis limit in the parsimony plot
(Default: 0.5).

auc_lim_max Max y_axis limit in the parsimony plot
(Default: "adaptive").

link
<ordinal only>

The link function used to model ordinal
outcomes. Default is "logit" for
proportional odds model. Other
options are "cloglog" (proportional
hazards model) and "probit".

(Continued on next page)

ll
OPEN ACCESS

4 STAR Protocols 4, 102302, June 16, 2023

Protocol



Table 1. Continued

Functions

Name(s) Arguments Usage Descriptions

AutoScore_weighting()
AutoScore_weighting_Survival()
AutoScore_weighting_Ordinal()

train_set A processed data.frame that contains
data to be analyzed, for training.

AutoScore STEP(iii): Generate
the initial score with the final
list of variables (Re-run
AutoScore Modules 2 + 3)

validation_set A processed data.frame that contains
data for validation purpose.

final_variables A vector containing the list of selected
variables, selected from step(ii)
AutoScore_parsimony. Run
vignette("Guide_book", package =
"AutoScore") to see the guidebook
or vignette.

max_score Maximum total score (Default: 100).

categorize Methods for categorize continuous variables.
Options include "quantile" or "kmeans"
(Default: "quantile").

max_cluster The max number of cluster (Default: 5).
Available if categorize = "kmeans".

quantiles Predefined quantiles to convert continuous
variables to categorical ones. (Default: c(0,
0.05, 0.2, 0.8, 0.95, 1)) Available if categorize =
"quantile".

metrics_ci
<binary only>

Whether to calculate confidence interval for
the metrics of sensitivity, specificity, etc.

time_point
<survival only>

The time points to be evaluated using time-
dependent AUC(t).

n_boot
<ordinal only>

Number of bootstrap cycles to compute
95% CI for performance metrics.

link
<ordinal only>

The link function used to model ordinal
outcomes. Default is "logit" for proportional
odds model. Other options are "cloglog"
(proportional hazards model) and "probit".

AutoScore_fine_tuning()
AutoScore_fine_tuning_Survival()
AutoScore_fine_tuning_Ordinal()

train_set A processed data.frame that contains data
to be analyzed, for training.

AutoScore STEP(iv): Fine-tune the
score by revising cut_vec with
domain knowledge (AutoScore
Module 5)

validation_set A processed data.frame that contains data
for validation purpose.

final_variables A vector containing the list of selected
variables, selected from step(ii)
AutoScore_parsimony.

cut_vec Generated from STEP(iii).

max_score Maximum total score (Default: 100).

metrics_ci
<binary only>

Whether to calculate confidence interval for
the metrics of sensitivity, specificity, etc.

time_point
<survival only>

The time points to be evaluated using time-
dependent AUC(t).

n_boot
<ordinal only>

Number of bootstrap cycles to compute 95%
CI for performance metrics.

report_cindex
<ordinal only>

Whether to report generalized c-index for
model evaluation (Default:FALSE for faster
evaluation).

(Continued on next page)

ll
OPEN ACCESS

STAR Protocols 4, 102302, June 16, 2023 5

Protocol



Table 1. Continued

Functions

Name(s) Arguments Usage Descriptions

AutoScore_testing()
AutoScore_testing_Survival()
AutoScore_testing_Ordinal()

test_set A processed data.frame that contains data for
testing purpose. This data.frame should have
same format as train_set (same variable names
and outcomes).

AutoScore STEP(v): Evaluate the
final score with ROC analysis
(AutoScore Module 6)

final_variables A vector containing the list of selected
variables, selected from Step(ii)
AutoScore_parsimony. Run
vignette("Guide_book", package =
"AutoScore") to see the guidebook or
vignette.

cut_vec Generated from STEP(iii).

scoring_table The final scoring table after fine-tuning,
generated from STEP(iv).

threshold Score threshold for the ROC analysis to
generate sensitivity, specificity, etc. If set to
"best", the optimal threshold will be calculated
(Default: "best").

with_label Set to TRUE if there are labels in the test_set
and performance will be evaluated accordingly
(Default:TRUE).

metrics_ci
<binary only>

Whether to calculate confidence interval for
the metrics of sensitivity, specificity, etc.

time_point
<survival only>

The time points to be evaluated using time-
dependent AUC(t).

n_boot
<ordinal only>

Number of bootstrap cycles to compute 95%
CI for performance metrics.

Optional functions

compute_descriptive_table() df A data.frame after checking and fulfilling
the requirement of AutoScore.

Compute descriptive table
for the dataset.

compute_uni_variable_table()
compute_uni_variable_table_survival()
compute_uni_variable_table_ordinal()

df A data.frame after checking and fulfilling
the requirement of AutoScore.

Create the table of
univariable analysis

link
<ordinal only>

The link function used to model ordinal
outcomes. Default is "logit" for proportional
odds model. Other options are "cloglog"
(proportional hazards model) and "probit".

n_digits
<ordinal only>

Number of digits to print for estimated
effect (Default:3).

compute_multi_variable_table()
compute_multi_variable_table_
survival()
compute_multi_variable_table_
ordinal()

df A data.frame, which should have passed
check_data().

Generate the table of
multivariable analysis
for your dataset.link

<ordinal only>
The link function used to model ordinal
outcomes. Default is "logit" for proportional
odds model. Other options are "cloglog"
(proportional hazards model) and "probit".

n_digits
<ordinal only>

Number of digits to print for exponentiated
coefficients (OR if logit link is used) (Default:3).

conversion_table() pred_score A vector with outcomes and final scores
generated from AutoScore_testing() .

Plot conversion table
for binary outcomes
based on final
performance evaluation

by Specify correct method for categorizing
the threshold: by "risk" or "score".
Default to "risk".

values A vector of threshold for analyze sensitivity,
specificity and other metrics. Default to
"c(0.01,0.05,0.1,0.2,0.5)".

conversion_table_survival() pred_score A data frame with outcomes and final scores
generated from AutoScore_testing_Survival().

Plot conversion table
for survival outcomes

score_cut Score cut-offs to be used for generating
conversion table; default c(40, 50, 60).

time_point The time points to be evaluated using
time-dependent AUC(t).

(Continued on next page)

ll
OPEN ACCESS

6 STAR Protocols 4, 102302, June 16, 2023

Protocol



CRITICAL: The commands above automatically install all dependencies of AutoScore (see

the key resources table). Troubleshooting 1 suggests a solution to possible installation

errors.

Data processing and checking

Timing: < 15 min

This step checks and processes data to meet all requirements. AutoScore has specific requirements

on the outcome, predictors and missing values.

2. Load data.

a. Read data from CSV or Excel files.

b. For this demo, use the integrated sample datasets in the package.

Table 1. Continued

Functions

Name(s) Arguments Usage Descriptions

conversion_table_ordinal() pred_score A data.frame with outcomes and final scores
generated from AutoScore_testing_Ordinal().

Plot conversion table
for ordinal outcomes

link The link function used to model ordinal
outcomes. Default is "logit" for proportional
odds model. Other options are "cloglog"
(proportional hazards model) and "probit".

max_score Maximum attainable value of final scores.

score_breaks A vector of score breaks to group scores. The
average predicted risk will be reported for each
score interval in the lookup table. Users are
advised to first visualize the predicted risk for
all attainable scores to determine scores (see
plot_predicted_risk).

plot_predicted_risk() pred_score Output from AutoScore_testing() or
AutoScore_testing_Ordinal().

Plot predicted risk for binary
and ordinal outcomes

link
<ordinal only>

The link function used in ordinal regression,
which must be the same as the value used to
build the risk score. Default is "logit" for
proportional odds model.

max_score Maximum total score (Default: 100).

final_variables A vector containing the list of selected
variables, selected from Step(ii).

scoring_table The final scoring table after fine-tuning,
generated from STEP(iv) by
AutoScore_fine_tuning() or
AutoScore_fine_tuning_Ordinal().

point_size Size of points in the plot. Default is 0.5.

plot_survival_km() pred_score Generated from STEP(v)
AutoScore_testing_Survival().

Plot Kaplan-Meier (KM)
curve for survival outcomes

score_cut Score cut-offs to be used for the analysis,
default c(40, 50, 60).

risk.table Allowed values include: TRUE or FALSE
specifying whether to show or not the risk
table. Default is TRUE.

title Title displayed in the KM curve.

legend.title Legend title displayed in the KM curve.

xlim Limit for x, default c(0, 90).

break.x.by Threshold for analyze sensitivity.

ll
OPEN ACCESS

STAR Protocols 4, 102302, June 16, 2023 7

Protocol



CRITICAL: These sample datasets are simulated to demonstrate the workflow. Any results

and scoring systems described in this protocol are created solely for the demonstration of

AutoScore usage and may not be clinically meaningful. Variable names are intentionally

masked to avoid misinterpretation and misuse of data and models.

Note: These sample datasets used <500MB memory when loaded in R and generally

consumed <1GB memory in the processing steps to be described below. Troubleshooting

2 discusses how to monitor memory usage and handle possible issues in subsequent steps

when working with larger clinical datasets.

3. Check outcomes.

a. For binary and ordinal outcomes, change the name of the outcome to ‘‘label’’ and make sure

that no other variables use this name. The code below changes the name of the binary

outcome in ‘‘sample_data’’ from ‘‘Mortality_inpatient’’ to ‘‘label’’:

b. For survival outcomes, change outcome names for the time variable and censoring status to

‘‘label_time’’ and ‘‘label_status’’, respectively, and make sure that no other variables use these

names.

Note: Binary outcomes and censoring status of survival outcomes should be coded as ‘‘fac-

tor’’ data type with two categories, and ordinal outcomes should be ‘‘factor’’ with three or

more categories. The following functions check data requirements for different types of

outcomes:

4. Check variables.

The functions ‘‘check_data()’’, ‘‘check_data_survival()’’ and ‘‘check_data_ordinal()’’ demonstrated

above also check whether predictors in the data fulfill the following requirements:

a. No special characters are available in variable names, e.g., ‘‘[‘‘, ‘‘]’’, ‘‘(‘‘, ‘‘)’’, ‘‘,’’. (Suggest using

‘‘_’’ to replace them if needed).

b. The name of variables should be unique and not entirely included in other variable names.

c. Independent variables should be numeric (class: ‘‘numeric‘‘ or ’’integer’’) or categorical (class:

‘‘factor’’ or ‘‘logical’’).

CRITICAL: All data problems reported by ‘‘check_data()’’, ‘‘check_data_survival()’’ or

‘‘check_data_ordinal()’’ must be fully resolved before proceeding to the modeling phase.

Troubleshooting 3 and 4 elaborate on common data problems and suggested solutions.

> library(AutoScore)

> data("sample_data") # Load data with binary outcome

> data("sample_data_survival") # Load data with survival outcome

> data("sample_data_ordinal") # Load data with ordinal outcome

> names(sample_data)[names(sample_data) == "Mortality_inpatient"] <- "label"

> check_data(sample_data) # For binary outcomes

> check_data_ordinal(sample_data_ordinal) # For ordinal outcomes

> check_data_survival(sample_data_survival) # For survival outcomes

ll
OPEN ACCESS

8 STAR Protocols 4, 102302, June 16, 2023

Protocol



5. Check missing values.

The functions ‘‘check_data()’’, ‘‘check_data_survival()’’ and ‘‘check_data_ordinal()’’ will report

missing rates for any variable with missing entries (coded as ‘‘NA’’ in R):

a. AutoScore expects the input dataset to be complete with no missing values. Users can pro-

ceed with modeling if the data is complete and fulfill other requirements described in steps

3 and 4.

b. If there are missing values in the dataset and users believe the missingness is informative and

prevalent enough to be preserved as ‘‘NA’’ rather than excluded or imputed, users can pro-

ceed with modeling because AutoScore can automatically handle missing values by treating

them as a new category named ‘‘Unknown’’.

c. Otherwise, users should handlemissing values using appropriatemethods (e.g., imputation or

complete data analysis) before proceeding with modeling.

CRITICAL: If feasible, users are highly recommended to carefully handle missing values in

the input dataset during data pre-processing and provide a complete dataset without

missing values to AutoScore.

Note: When imputing missing values or treating them as a new category, high missing rates

(e.g., >80%) may reduce model stability and should be handled with caution. For simplicity, in

this protocol, we only demonstrate sample data with complete information, and interested

users can refer to Demo 3 in Chapters 4 to 6 in our online guidebook (https://nliulab.

github.io/AutoScore/) for more details on data with missing values.

6. Optional operations.

a. Check variable distribution.

b. Handle outliers.

Note: The raw electronic health records data may contain outliers caused by system errors or

clerical mistakes. Users are recommended to handle them appropriately before using

AutoScore to ensure optimal modeling performance.

Splitting data

Timing: < 10 min

This step aims to randomly split the dataset into three separate datasets (training, validation, and

test datasets) for model training, validation and testing.

7. Split the dataset into training, validation, and test datasets.

Note: The split-sample approach demonstrated above is suitable when there is a sufficient

sample size, e.g., 20,000 observations in ‘‘sample_data’’. AutoScore provides a cross-valida-

tion option for small sample sizes (see https://nliulab.github.io/AutoScore/). Users can skip

> set.seed(4)

> out_split <- split_data(data = sample_data, ratio = c(0.7, 0.1, 0.2))

> train_set <- out_split$train_set

> validation_set <- out_split$validation_set

> test_set <- out_split$test_set

ll
OPEN ACCESS

STAR Protocols 4, 102302, June 16, 2023 9

Protocol

https://nliulab.github.io/AutoScore/
https://nliulab.github.io/AutoScore/
https://nliulab.github.io/AutoScore/


this step if the three datasets have been prepared and have passed the check operations in the

previous subsection.

AutoScore step (i): Generate a variable ranking list

Timing: < 10 min (depending on your data and computer)

This is the first step of the AutoScore workflow, which uses machine learning algorithms to identify

the top-ranking predictors for subsequent score generation.

Note: From this step onwards, we describe R commands and outputs for the example with a

binary outcome and provide additional information regarding survival and ordinal outcomes

in Note.

8. To rank all current candidate variables, run the following command:

Note: Refer to Table 1 for a detailed description of all arguments available to each AutoScore

function. The resulting variable ranking is shown in Figure 1A. Troubleshooting 5 elaborates

on suggested solutions for debugging when facing some unexpected errors.

Note: For survival data, please use ‘‘AutoScore_rank_Survival()’’ instead (see Figure 2A), which

ranks variables using the random survival forest.

Note: For ordinal data, please use ‘‘AutoScore_rank_Ordinal()’’ instead (see Figure 3A), which

ranks variables using the random forest for multiclass classification.

AutoScore step (ii): Select the best model with a parsimony plot

Timing: < 10 min

The second step of the AutoScore workflow helps users select a parsimonious list of variables for the

final scoring model using a parsimony plot. Variable selection is flexible and can incorporate clinical

knowledge and user preference in addition to model performance.

9. To generate the parsimony plot based on the variable ranking (‘‘ranking’’) from step 8, simply run

the following:

a. Key input arguments are the training and validation datasets (‘‘train_set’’ and ‘‘validation_set’’)

and variable ranking (‘‘ranking’’). Other arguments can be adjusted to users’ needs.

> AUC <- AutoScore_parsimony(

train_set = train_set, validation_set = validation_set,

rank = ranking, max_score = 100, n_min = 1, n_max = 20,

categorize = "quantile", quantiles = c(0, 0.05, 0.2, 0.8, 0.95, 1),

auc_lim_min = 0.5, auc_lim_max = "adaptive"

)

> ranking <- AutoScore_rank(train_set = train_set, method = "rf")

ll
OPEN ACCESS

10 STAR Protocols 4, 102302, June 16, 2023

Protocol



b. Refer to Table 1 for a detailed description of all input arguments.

Performance with an increasing number of variables will be printed out on the screen, and the

parsimony plot (i.e., model performance against complexity) will be available (see Figure 1B).

Troubleshooting 5 elaborates on suggested solutions for debugging when facing some unex-

pected errors.

Optional: Users could use the AUC for further analysis or export it as the CSV to other software

for plotting.

Note: For survival data, please use ‘‘AutoScore_parsimony_Survival()’’ instead (see Fig-

ure 2B). To obtain a single overall performance metric in the parsimony plot, we use the in-

tegrated AUC (iAUC), a weighted average of AUC(t) over the follow-up period (the range of

‘‘label_time’’).

Note: For ordinal data, please use ‘‘AutoScore_parsimony_Ordinal()’’ instead (see Figure 3B,

where performance is measured using mean AUC (mAUC) across dichotomized compari-

sons. Users have the additional option to choose the link function in the ordinal regression

using the parameter ‘‘link’’, which affects predictive performance. The default is link=‘‘logit’’

corresponding to the commonly used proportional odds model, and users may consider

‘‘cloglog’’ or ‘‘probit’’. The same ‘‘link’’ parameter must be used throughout all AutoScore

functions.

10. Determine the optimal number of variables (‘‘num_var’’) based on the parsimony plot

obtained in step 9. The final list of variables can be the first ‘‘num_var’’ (e.g., the first 6)

variables:

Optional: Users can adjust the finally included variables ‘‘final_variables’’ based on their clin-

ical preferences and knowledge, e.g., select the top 6 variables and the 9th and 10th

variables:

AutoScore step (iii): Generate initial scores with the final list of variables

Timing: < 10 min

This is the third step of the AutoScore workflow, which generates initial scores with the final list of

variables selected in step 10.

11. Generate initial cutoff values (‘‘cut_vec’’) for all continuous variables in the list of variables from

step 10 (‘‘final_variables’’), which can be fine-tuned in step 12:

> num_var <- 6

> final_variables <- names(ranking[1:num_var])

> num_var <- 6

> final_variables <- names(ranking[c(1:num_var, 9, 10)])

> write.csv(data.frame(AUC), file = "AUC.csv")

ll
OPEN ACCESS

STAR Protocols 4, 102302, June 16, 2023 11

Protocol



The initial scoring table corresponding to the cutoff values above and the resulting intermediate per-

formance evaluation (based on ROC evaluation for binary outcomes) will be displayed (see Fig-

ure 4A). Users can proceed to the next steps if the intermediate evaluation results are satisfactory.

Otherwise, they may repeat steps 10–11 to adjust the final variable list and assess performance mea-

sures with the updated scoring table until satisfactory performance is reached. Troubleshooting 5

elaborates on suggested solutions for debugging when facing some unexpected errors.

Note: For survival data, please use ‘‘AutoScore_weighting_Survival()’’ instead (see Figure 2C).

This function requires an additional argument, ‘‘time_point’’, to specify the time points at

which time-dependent AUC (t) is to be evaluated.

Note: For ordinal data, please use ‘‘AutoScore_weighting_Ordinal()’’ instead (see Figure 3C).

Users have the additional option to choose the link function for the ordinal regression (see

Note of step 10 for detail). Performance is measured using mAUC.

AutoScore step (iv): Fine-tune the initial score

Timing: < 10 min

This step gives users an opportunity to revise the data-driven cutoff values for each continuous var-

iable from step 11, by combining categories, rounding cutoff values up to meaningful values, or

changing cutoffs according to clinical knowledge, user preference or implementation requirement.

12. After checking the initial scores and their cutoff values, users may revise the cutoff values for

each continuous variable using the codes as follow.

Note: This step is optional.

13. Run the following command to regenerate the scoring table with the updated ‘‘cut_vec’’ from

step 12 (or the original data-driven ‘‘cut_vec’’ from step 11 if step 12 is skipped).

> cut_vec <- AutoScore_weighting(

train_set = train_set, validation_set = validation_set,

final_variables = final_variables, max_score = 100,

categorize = "quantile",

quantiles = c(0, 0.05, 0.2, 0.8, 0.95, 1)

)

> cut_vec$Age <- c(50, 75, 90)

> cut_vec$Lab_H <- c(0.2, 1, 3, 4)

> cut_vec$Lab_K <- c(10, 40)

> cut_vec$Lab_B <- c(10, 17)

> cut_vec$Vital_A <- c(70, 98)

> scoring_table <- AutoScore_fine_tuning(

train_set = train_set, validation_set = validation_set,

ll
OPEN ACCESS

12 STAR Protocols 4, 102302, June 16, 2023

Protocol



The updated scoring systems and performance based on the validation set are reported (see Fig-

ure 4B). For example, the cutoff values for age are updated from default quantile-based values to

50, 75 and 90, as specified in step 12 (indicated by blue rectangles in Figure 4), and the points for

age categories are updated by retraining the model.

If the intermediate evaluation results for the current scoring system (i.e., cutoff values, score values,

variables, etc.) are satisfactory, users may proceed with testing in the next step. Otherwise, users

may repeat steps 12–13 to revise fine-tuning or steps 10–13 to refine not only cutoff values but

also the variable list, until satisfactory performance is achieved.

Note: For survival data, please use ‘‘AutoScore_fine_tuning_Survival()’’ instead (see Fig-

ure 2D), with an additional ‘‘time_point’’ argument for time points to evaluate the time-depen-

dent AUC(t) at.

Note: For ordinal, please use ‘‘AutoScore_fine_tuning_Ordinal()’’ instead (see Figure 3D), with

an additional ‘‘link’’ argument to specify the link function for ordinal regression. Performance is

evaluated using mAUC with 95% bootstrap CI (computed from ‘‘n_boot=100’’ bootstrap sam-

ples by default).

AutoScore step (v): Evaluate final risk scores on the test dataset

Timing: < 10 min

This step is to evaluate the final scoring system based on the unseen testing dataset.

14. Using the scoring table (‘‘scoring_table’’) generated from step 13, run the following command to

generate predicted scores (‘‘pred_score’’) for each subject in the testing set (‘‘test_set’’) and

print out the performance indicators (and/or performance curves, including ROC curve). The

testing performance is shown in Figure 5.

Optional: Use ‘‘print_roc_performance()’’ to generate the performance under different score

thresholds (e.g., 90).

Note: For survival data, please use ‘‘AutoScore_testing_Survival()’’ instead (see Figure 2E), with

an additional ‘‘time_point’’ argument for time points to evaluate the time-dependent AUC(t) at.

> pred_score <- AutoScore_testing(

test_set = test_set, final_variables = final_variables,

cut_vec = cut_vec, scoring_table = scoring_table,

threshold = "best", with_label = TRUE

)

final_variables = final_variables, cut_vec = cut_vec,

max_score = 100

)

> print_roc_performance(pred_score$Label, pred_score$pred_score, threshold = 90)

ll
OPEN ACCESS

STAR Protocols 4, 102302, June 16, 2023 13

Protocol



Note: For ordinal, please use ‘‘AutoScore_testing_Ordinal()’’ instead (see Figure 3E), with an

additional ‘‘link’’ argument to specify the link function for ordinal regression. In addition to

mAUC, a generalized c-index is reported for the test set with 95% CI computed from

‘‘n_boot=100’’ bootstrap samples by default. Users can also apply ‘‘print_performance_ordi-

nal()’’ to predictions to print mAUC with or without the generalized c-index (see Figure 3E).

Map score to risk

Timing: < 10 min

This step describes how to map risk scores to predicted probabilities and visualize the probabilities.

15. Map risk scores to predicted probabilities using the following conversion table.

Note: For binary outcomes, users can generate conversion tables (with predictive perfor-

mance measures) for specific levels of risk (e.g., 0.01, 0.05, 0.1, 0.2, 0.5) or score thresholds

(e.g., 20, 40, 60, 75) using the commands below. Corresponding outputs are shown in

Figures 6A and 6B, respectively. The tables are printed as text output, and users can copy

and paste the tables as Excel tables when using appropriate column delimiters.

Note: For survival data, please use ‘‘conversion_table_survival()’’ instead, which reports pre-

dicted survival probabilities and selected time points (‘‘time_point’’) using specified score

thresholds (‘‘score_cut’’) (see Figure 2F).

Note: For ordinal data, please use ‘‘conversion_table_ordinal()’’ instead, which reports pre-

dicted probabilities of being in each ordinal category using specified score thresholds

(‘‘score_breaks’’) (see Figure 3F).

16. The predicted risk corresponding to risk scores can be visualized using an interactive figure (see

Figure 7 for screenshot). Users can use the built-in toolbar to zoom in for closer inspection or

download it as a PNG file.

Note: For survival data, the Kaplan-Meier curve can be plotted using the ‘‘plot_survival_km()’’

function with selected score thresholds (‘‘score_cut’’). See Figure 2F.

Note: For ordinal data, the same function (‘‘plot_predicted_risk()’’) can be used to visualize

predicted risk for each category in an ordinal outcome. See Figure 3F.

EXPECTED OUTCOMES

AutoScore can seamlessly generate risk scores using a parsimonious set of variables for different

types of clinical outcomes, which can be easily implemented and validated in clinical practice.

> conversion_table(pred_score, by ="risk",

values = c(0.01,0.05,0.1,0.2,0.5))

> conversion_table(pred_score, by = "score", values = c(20,40,60,75))

> plot_predicted_risk(pred_score = pred_score, max_score = 100,

final_variables = final_variables,

scoring_table = scoring_table)

ll
OPEN ACCESS

14 STAR Protocols 4, 102302, June 16, 2023

Protocol



Moreover, it enables users to build transparent and interpretable clinical scores quickly in a straight-

forward manner. It has been extensively used in different clinical applications, e.g., for general risk

assessments in the emergency department,22,23,35,36 and for prediction of disease-specific out-

comes in specific patient cohorts.24–26,37–41

LIMITATIONS

This protocol has some limitations. First, we did not provide detailed instructions for data prepro-

cessing, as it often requires domain knowledge specific to the clinical question. Users are highly rec-

ommended to consult domain experts on the processing of raw data, outcome definition, and outlier

detection and removal before importing data into AutoScore. Additionally, the final scoring system

should be evaluated based on domain knowledge to ensure meaningful interpretation. Further

studies are required to prepare a scoring system for clinical deployment and evaluate its feasibility

for clinical implementation. Furthermore, although this protocol has covered binary, survival and

ordinal outcomes, which are common in clinical studies, continuous outcomes are not included. If

a continuous outcome can be meaningfully categorized into a few categories, users may analyze

it as an ordinal outcome using the current AutoScore package following the steps in this protocol.

Future work will investigate the feasibility of extending the scoring system to handle continuous clin-

ical outcomes.

TROUBLESHOOTING

Problem 1

Fail to install the AutoScore package due to errors when installing dependencies in step 1.

Potential solution

Ensure R version 3.5.0 or later is installed. Users are recommended to use the latest stable version of

R available. When an installation error is reported for a dependent package of AutoScore, note down

the name of that package, restart the R session and manually install the package using the following

command:

where <package_name> is to be replaced by the actual name of the dependency package. When

the installation completes, restart the installation of AutoScore using the command in step 1.

> install.packages("<package_name>")

Figure 1. Main AutoScore output for variable ranking and selection

(A) Variable importance from step 8 and (B) parsimony plot from step 9.

ll
OPEN ACCESS

STAR Protocols 4, 102302, June 16, 2023 15

Protocol



Problem 2

Fail to go through due to high memory usage when working with large clinical datasets, especially in

steps 8 and 9.

Potential solution

When working with large datasets, the R session may lag or abort when the maximum memory is ex-

ceeded, although this is not likely when working with typical clinical datasets. For users’ reference,

when working with the ‘‘sample_data’’ in this protocol that has 20,000 observations and 21 variables,

the memory usage was generally between 400Mb to 1Gb.

Users can easily monitor memory usage by using RStudio, which shows current memory usage and the

size of large objects in the Environment panel for convenientmanagement. Users can remove large ob-

jects to free up memory if they are no longer needed in the current session, for example, the ‘‘sample_

data’’ and ‘‘out_split’’ objects after splitting data in step 7 by using the following R command:

Variable ranking using the random forest (i.e., step 8) can be memory- and time-consuming when

working with large training sets, and an error message ‘‘Error: vector memory exhausted (limit

reached?)’’ will be displayed if there is insufficient memory for this task. In such cases, users can

consider using fewer trees (i.e., a smaller value for ‘‘ntree’’) for this step, or to use a smaller training

set that can sufficiently represent the full dataset.

> rm(sample_data, out_split)

Figure 2. Main AutoScore functions for survival outcomes and corresponding output for score development and evaluation

These sample datasets are simulated to demonstrate the workflow and any results and scoring systems described here are created solely for the

demonstration.

(A) Variable importance from step 8, (B) parsimony plot step 9, (C) initial scoring table and performance measures from step 11, (D) fine-tuned scoring

table and performance measures from step 13, (E) performance measure of the final scoring model from step 14, and (F) conversion table and

visualization of predicted probabilities from steps 15 and 16.

ll
OPEN ACCESS

16 STAR Protocols 4, 102302, June 16, 2023

Protocol



Problem 3

Fail to go through AutoScore data checks in step 3, i.e., ‘‘check_data()’’ for binary outcomes,

‘‘check_data_survival()’’ for survival outcomes, or ‘‘check_data_ordinal()’’ for ordinal outcomes.

Potential solution

The warning or error messages explain why the dataset is not ready to be analyzed using AutoScore,

and users need to address them as instructed, which we describe in detail below. Users should rerun

the ‘‘check_data()’’ function (or ‘‘check_data_survival()’’ or ‘‘check_data_ordinal()’’, as appropriate)

after resolving each error or warning message until all data problems are resolved.

Error message ‘‘for this dataset: There is no dependent variable ’label’ to indicate the outcome.’’

from ‘‘check_data()’’ indicates that the binary outcome variable is absent from the current dataset

or is present but not correctly named. Users must either add the outcome to the dataset with the

name ‘label’, or rename the outcome to ‘label’. Similar error messages from ‘‘check_data_survival()’’

and ‘‘check_data_ordinal()’’ indicate the absence of survival outcomes (‘‘label_time’’ for time and ‘‘la-

bel_status’’ for status) and ordinal outcomes (‘‘label’’), respectively.

The warning message ‘‘Please keep outcome label variable binary’’ from ‘‘check_data()’’ or ‘‘check_-

data_ordinal()’’ indicates that users need to convert the outcome ‘‘label’’ to ‘‘factor’’ data type. The

warning message ‘‘Please keep outcome status variable binary’’ from ‘‘check_data_survival()’’ indi-

cates that users need to convert the status variable ‘‘label_status’’ to ‘‘factor’’ data type.

The following warning messages regarding independent variables are common to all three data

checking functions.

Figure 3. Main AutoScore functions for ordinal outcomes and corresponding output for score development and evaluation

These sample datasets are simulated to demonstrate the workflow, and any results and scoring systems described here are created solely for the

demonstration.

(A) Variable importance from step 8, (B) parsimony plot step 9, (C) initial scoring table and performance measures from step 11, (D) fine-tuned scoring

table and performance measures from step 13, (E) performance measure of the final scoring model from step 14, and (F) conversion table and

visualization of predicted probabilities from steps 15 and 16.

ll
OPEN ACCESS

STAR Protocols 4, 102302, June 16, 2023 17

Protocol



The warning message ‘‘Special character detected in variable names’’ indicates that variable names

in the current dataset (which will be listed after the warning message) contains special characters.

Users should change the mentioned variable names, e.g., by replacing special characters by ‘‘_’’.

If warned, ‘‘Toomany categories (>10) in variables: ‘[variable name]’’’, users need to reduce the number

of categories for variables listed after this warning message so that they have less than 10 categories.

If the warningmessage ‘‘Variables coded as [variable type] instead of factor: ‘[variable name]’’’, users

should convert variables listed after this warning message to appropriate data types, e.g., ‘‘factor’’

for categorical variables and numeric for ‘‘continuous’’ variables.

If a warningmessage reports the presence ofmissing entries in the current dataset, users should inspect

the number and proportion ofmissing entries reported after this warningmessage, and decidewhether

to handle the missing values manually via methods like exclusion or imputation before applying the

AutoScore workflow or to keep them as ‘‘NA’’ (if they are informative and prevalent enough). If the

user would like to preserve the missingness, they can directly move to the next step because

AutoScore can automatically handle the missingness by treating them as a new category ‘‘Unknown’’.

Problem 4

R fails to consider missing entries as ‘‘NA’’, especially in steps 5 and 8.

Potential solution

If missing entries in a dataset ‘‘data.csv’’ are represented by characters such as a white space, ‘‘/’’,

‘‘NA’’ or ‘‘N.A.’’, by default, they will be read into R as meaningful strings and will not be considered

Figure 4. AutoScore output for intermediate scoring table evaluation and fine-tuning

(A) Initial scoring table and performance measures from step 11 and (B) fine-tuned scoring table and performance measures from step 13.

ll
OPEN ACCESS

18 STAR Protocols 4, 102302, June 16, 2023

Protocol



by R as missing. Users can use the following command to check and understand all values present in

variable ‘‘x’’ of dataset ‘‘data’’:

To appropriately recognize special characters as missing information, users can specify the repre-

sentation of missing when reading the data into R using command:

Problem 5

Encounter other errors when using the AutoScore package to process your data in different steps,

especially in steps 8, 9, 11, 13 and 14.

Potential solution

Although AutoScore is aimed to become a universal package that is compatible with any structured

data, some unique data structures (e.g., with highly sparse data or uncommon data distribution)

might cause errors during AutoScore processing even after the data pass the ‘‘check_data()’’ func-

tion. We highlight that the ‘‘check_data()’’ function focus on data formatting and missing issues.

Users should carefully inspect the input data (by using ‘‘compute_descriptive_table()’’ or other R

functions) before building models using AutoScore to avoid unreliable findings and prevent errors.

We provide the following steps for users to debug and proceed:

� Make sure all ‘‘check_data()’’ requirements have been fulfilled and all warnings and errors have

been fully resolved. Confirm this by rerunning ‘‘check_data()’’ after resolving each error or warning.

� Carefully read the R error messages and try to narrow them down to a specific variable that might

have caused the error.

> read.csv("data.csv", na.strings = c(" ", "/", "NA", "N.A."))

Figure 5. Performance measure of the final scoring model on the test set from step 14

> table(data$x, useNA="ifany")

ll
OPEN ACCESS

STAR Protocols 4, 102302, June 16, 2023 19

Protocol



� If users manage to identify the variable causing the error, inspect this variable in greater detail

(e.g., variable distribution, sparsity, outliers, etc.) to find feasible remedies (e.g., manually catego-

rizing continuous variables, combining categories in categorical variables, excluding problematic

variables from analysis, etc.).

� If this error persists, or if the error message is unclear, report the error to https://github.com/

nliulab/AutoScore/issues with descriptive statistics for relevant variables (preferably with sample

data, if possible), to help us better understand the error.

� After receiving the error report, our team will provide targeted suggestions for you. This will also

help us improve the package and user experience for future researchers.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the lead contact, Nan Liu (liu.nan@duke-nus.edu.sg).

Materials availability

This study did not generate new unique reagents.

Figure 6. Conversion tables for binary outcomes

Conversion tables generated by cut-offs in (A) predicted risks or (B) score values based on the test data.

ll
OPEN ACCESS

20 STAR Protocols 4, 102302, June 16, 2023

Protocol

https://github.com/nliulab/AutoScore/issues
https://github.com/nliulab/AutoScore/issues
mailto:liu.nan@duke-nus.edu.sg


Data and code availability

For complete details on the use and execution of this protocol, please refer to https://nliulab.github.

io/AutoScore/. The full code repository is available at https://github.com/nliulab/AutoScore, and

the current version is archived at Zenodo: https://zenodo.org/record/7813554#.ZDQO8i8Rrx8.

ACKNOWLEDGMENTS

This study was supported by Duke-NUS Medical School, Singapore. Y.N. is supported by the Khoo

Postdoctoral Fellowship Award (project no. Duke-NUS- KPFA/2021/0051) from the Estate of Tan Sri

Khoo Teck Puat. The funders had no role in study design, data collection and analysis, decision to

publish, or preparation of the manuscript.

AUTHOR CONTRIBUTIONS

N.L. conceptualized the protocol and supervised the study. F.X., Y.N., M.L., S.L., S.E.S., H.Y., B.C.,

andN.L. developed the AutoScore package and the protocol. F.X., Y.N., andM.L. prepared the data

and performed the analyses. F.X., Y.N., M.L., and S.L. wrote the manuscript. F.X., Y.N., and H.Y.

created visualizations. All authors participated in the investigation and validation of the protocol,

and reviewed and edited the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

REFERENCES

1. Xie, F., Chakraborty, B., Ong, M.E.H.,
Goldstein, B.A., and Liu, N. (2020). AutoScore:
a machine learning-based automatic clinical
score generator and its application to mortality
prediction using electronic health records.
JMIR Med. Inform. 8, e21798. https://doi.org/
10.2196/21798.

2. Xie, F., Ning, Y., Yuan, H., Goldstein, B.A., Ong,
M.E.H., Liu, N., and Chakraborty, B. (2022).
AutoScore-Survival: developing interpretable
machine learning-based time-to-event scores
with right-censored survival data. J. Biomed.

Inform. 125, 103959. https://doi.org/10.1016/j.
jbi.2021.103959.

3. Saffari, S.E., Ning, Y., Xie, F., Chakraborty, B.,
Volovici, V., Vaughan, R., Ong, M.E.H., and Liu,
N. (2022). AutoScore-Ordinal: an interpretable
machine learning framework for generating
scoring models for ordinal outcomes. BMC
Med. Res. Methodol. 22, 286. https://doi.org/
10.1186/s12874-022-01770-y.

4. Azzi, S., Salem, J., Thibaud, N., Chantot-
Bastaraud, S., Lieber, E., Netchine, I., and

Harbison, M.D. (2015). A prospective study
validating a clinical scoring system and
demonstrating phenotypical-genotypical
correlations in Silver-Russell syndrome. J. Med.
Genet. 52, 446–453.

5. Harrison, S.A., Oliver, D., Arnold, H.L., Gogia,
S., and Neuschwander-Tetri, B.A. (2008).
Development and validation of a simple
NAFLD clinical scoring system for identifying
patients without advanced disease. Gut 57,
1441–1447. https://doi.org/10.1136/gut.2007.
146019.

Figure 7. Predicted risk corresponding to risk scores for a binary outcome

ll
OPEN ACCESS

STAR Protocols 4, 102302, June 16, 2023 21

Protocol

https://nliulab.github.io/AutoScore/
https://nliulab.github.io/AutoScore/
https://github.com/nliulab/AutoScore
https://zenodo.org/record/7813554
https://doi.org/10.2196/21798
https://doi.org/10.2196/21798
https://doi.org/10.1016/j.jbi.2021.103959
https://doi.org/10.1016/j.jbi.2021.103959
https://doi.org/10.1186/s12874-022-01770-y
https://doi.org/10.1186/s12874-022-01770-y
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref4
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref4
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref4
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref4
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref4
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref4
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref4
https://doi.org/10.1136/gut.2007.146019
https://doi.org/10.1136/gut.2007.146019


6. Jawaid, A., Asad, A., Motiei, A., Munir, A.,
Bhutto, E., Choudry, H., Idrees, K., Durrani, K.,
Rahman, M., Ahuja, M., et al. (1999). Clinical
scoring system: a valuable tool for decision
making in cases of acute appendicitis. J. Pak.
Med. Assoc. 49, 254–259.

7. McKay, R., and Shepherd, J. (2007). The use of
the clinical scoring system by Alvarado in the
decision to perform computed tomography for
acute appendicitis in the ED. Am. J. Emerg.
Med. 25, 489–493.

8. Parikh, N.I., Pencina, M.J., Wang, T.J.,
Benjamin, E.J., Lanier, K.J., Levy, D.,
D’Agostino, R.B., Sr., Kannel, W.B., and Vasan,
R.S. (2008). A risk score for predicting near-
term incidence of hypertension: the
Framingham Heart Study. Ann. Intern. Med.
148, 102–110.

9. Brouwer, T.F., Collard, D., and van den Born,
B.A.-O. (2019). Blood pressure lowering
treatment and the Framingham score: do not
fear risk. J. Clin. Hypertens. 21, 1821–1822.

10. van Walraven, C., Dhalla, I.A., Bell, C., Etchells,
E., Stiell, I.G., Zarnke, K., Austin, P.C., and
Forster, A.J. (2010). Derivation and validation of
an index to predict early death or unplanned
readmission after discharge from hospital to
the community. Can. Med. Assoc. J. 182,
551–557. https://doi.org/10.1503/cmaj.091117.

11. Die Loucou, J., Pagès, P.B., Falcoz, P.-E.,
Thomas, P.-A., Rivera, C., Brouchet, L., Baste,
J.-M., Puyraveau, M., Bernard, A., and Dahan,
M. (2020). Validation and update of the thoracic
surgery scoring system (Thoracoscore) risk
model. Eur. J. Cardio. Thorac. Surg. 58,
350–356.

12. Kim, J., Hong, J.Y., Kim, S.T., Park, S.H., Jekal,
S.Y., Choi, J.S., Chang, D.K., Kang, W.K., Seo,
S.W., and Lee, J. (2020). Clinical scoring system
for the prediction of survival of patients with
advanced gastric cancer. ESMO Open 5,
e000670. https://doi.org/10.1136/esmoopen-
2020-000670.

13. Doshi-Velez, F., and Kim, B. (2017). Towards a
rigorous science of interpretable machine
learning. Preprint at arXiv. https://doi.org/10.
48550/arXiv.1702.08608.

14. Amann, J., Blasimme, A., Vayena, E., Frey, D.,
and Madai, V.I.; The Precise4Q consortium
(2020). Explainability for artificial intelligence in
healthcare: a multidisciplinary perspective.
BMCMed. Inform. Decis. Mak. 20, 310. https://
doi.org/10.1186/s12911-020-01332-6.

15. Li, M., and Chapman, G.B. (2020). Medical
decision making. The Wiley Encyclopedia of
Health Psychology, 347–353. https://
onlinelibrary.wiley.com/doi/abs/10.1002/
9781119057840.ch84.

16. Veropoulos, K. (2001). Machine Learning
Approaches to Medical Decision Making
(University of Bristol).

17. McKelvey, T., Ahmad, M., Teredesai, A., and
Eckert, C. (2018). Interpretable machine
learning in healthcare. In 2018 IEEE
International Conference on Healthcare
Informatics (ICHI).

18. Churpek, M.M., Yuen, T.C., Park, S.Y., and
Edelson, D.P. (2011). Derivation of a cardiac
arrest prediction model using ward vital signs.
Crit. Care Med. 40, 2102–2108.

19. Sullivan, L.M., Massaro, J.M., and D’Agostino,
R.B., Sr. (2004). Presentation of multivariate
data for clinical use: the Framingham Study risk
score functions. Stat. Med. 23, 1631–1660.

20. Rudin, C. (2019). Stop explaining black box
machine learning models for high stakes
decisions and use interpretable models
instead. Nat. Mach. Intell. 1, 206–215.

21. Zeng, J., Ustun, B., and Rudin, C. (2015).
Interpretable classification models for
recidivism prediction. Preprint at arXiv. https://
doi.org/10.48550/arXiv.1503.07810.

22. Xie, F., Ong, M.E.H., Liew, J.N.M.H., Tan,
K.B.K., Ho, A.F.W., Nadarajan, G.D., Low, L.L.,
Kwan, Y.H., Goldstein, B.A., Matchar, D.B.,
et al. (2021). Development and assessment of
an interpretable machine learning triage tool
for estimating mortality after emergency
admissions. JAMA Netw. Open 4, e2118467.
https://doi.org/10.1001/jamanetworkopen.
2021.18467.

23. Xie, F., Liu, N., Yan, L., Ning, Y., Lim, K.K.,
Gong, C., Kwan, Y.H., Ho, A.F.W., Low, L.L.,
Chakraborty, B., and Ong, M.E.H. (2022).
Development and validation of an
interpretable machine learning scoring tool for
estimating time to emergency readmissions.
eClinicalMedicine 45, 101315. https://doi.org/
10.1016/j.eclinm.2022.101315.

24. Petersen, K.K., Lipton, R.B., Grober, E.,
Davatzikos, C., Sperling, R.A., and Ezzati, A.
(2022). Predicting amyloid positivity in
cognitively unimpaired older adults: a machine
learning approach using A4 data. Neurology
98, e2425. https://doi.org/10.1212/WNL.
0000000000200553.

25. Liu, N., Liu, M., Chen, X., Ning, Y., Lee, J.W.,
Siddiqui, F.J., Saffari, S.E., Ho, A.F.W., Shin,
S.D., Ma, M.H.-M., et al. (2022). Development
and validation of an interpretable prehospital
return of spontaneous circulation (P-ROSC)
score for patients with out-of-hospital cardiac
arrest using machine learning: a retrospective
study. eClinicalMedicine 48, 101422. https://
doi.org/10.1016/j.eclinm.2022.101422.

26. Wong, X.Y., Ang, Y.K., Li, K., Chin, Y.H., Lam,
S.S.W., Tan, K.B.K., Chua, M.C.H., Ong, M.E.H.,
Liu, N., Pourghaderi, A.R., and Ho, A.F.W.;
PAROS Singapore Investigators (2022).
Development and validation of the SARICA
score to predict survival after return of
spontaneous circulation in out of hospital
cardiac arrest using an interpretable machine
learning framework. Resuscitation 170,
126–133. https://doi.org/10.1016/j.
resuscitation.2021.11.029.

27. Yuan, H., Xie, F., Ong, M.E.H., Ning, Y., Chee,
M.L., Saffari, S.E., Abdullah, H.R., Goldstein,
B.A., Chakraborty, B., and Liu, N. (2022).
AutoScore-Imbalance: an interpretable
machine learning tool for development of
clinical scores with rare events data. J. Biomed.
Inform. 129, 104072. https://doi.org/10.1016/j.
jbi.2022.104072.

28. Ning, Y., Ong, M.E.H., Chakraborty, B.,
Goldstein, B.A., Ting, D.S.W., Vaughan, R., and
Liu, N. (2022). Shapley variable importance
cloud for interpretable machine learning.
Patterns 3, 100452.

29. Ning, Y., Li, S., Ong, M.E.H., Xie, F.,
Chakraborty, B., Ting, D.S.W., and Liu, N.

(2022). A novel interpretable machine learning
system to generate clinical risk scores: an
application for predicting early mortality or
unplanned readmission in a retrospective
cohort study. PLOS Digit. Health 1, e0000062.
https://doi.org/10.1371/journal.pdig.0000062.

30. Xie, F., Ning, Y., Yuan, H., Saffari, S.E.,
Chakraborty, B., and Liu, N. (2021). Package
’AutoScore’: an interpretable machine
learning-based automatic clinical score
generator, R package version 0.2. 0.

31. R Core Team (2013). R: A Language and
Environment for Statistical Computing (R
Foundation for Statistical Computing).

32. Toma�sev, N., Harris, N., Baur, S., Mottram, A.,
Glorot, X., Rae, J.W., Zielinski, M., Askham, H.,
Saraiva, A., Magliulo, V., et al. (2021). Use of
deep learning to develop continuous-risk
models for adverse event prediction from
electronic health records. Nat. Protoc. 16,
2765–2787. https://doi.org/10.1038/s41596-
021-00513-5.

33. Sarker, I.H. (2021). Machine learning:
algorithms, real-world applications and
research directions. SN Comput. Sci. 2, 160.
https://doi.org/10.1007/s42979-021-00592-x.

34. Seneviratne, M.G., Shah, N.H., and Chu, L.
(2020). Bridging the implementation gap of
machine learning in healthcare. BMJ Innov. 6,
45–47. https://doi.org/10.1136/bmjinnov-
2019-000359.

35. Xie, F., Zhou, J., Lee, J.W., Tan, M., Li, S.,
Rajnthern, L.S., Chee, M.L., Chakraborty, B.,
Wong, A.-K.I., Dagan, A., et al. (2022).
Benchmarking emergency department
prediction models with machine learning and
public electronic health records. Sci. Data 9,
658. https://doi.org/10.1038/s41597-022-
01782-9.

36. Yu, J.Y., Xie, F., Nan, L., Yoon, S., Ong, M.E.H.,
Ng, Y.Y., and Cha, W.C. (2022). An external
validation study of the Score for Emergency
Risk Prediction (SERP), an interpretable
machine learning-based triage score for the
emergency department. Sci. Rep. 12, 17466.
https://doi.org/10.1038/s41598-022-22233-w.

37. Ang, Y., Li, S., Ong, M.E.H., Xie, F., Teo, S.H.,
Choong, L., Koniman, R., Chakraborty, B., Ho,
A.F.W., and Liu, N. (2022). Development and
validation of an interpretable clinical score for
early identification of acute kidney injury at the
emergency department. Sci. Rep. 12, 7111.
https://doi.org/10.1038/s41598-022-11129-4.

38. Shu, T., Huang, J., Deng, J., Chen, H., Zhang,
Y., Duan, M., Wang, Y., Hu, X., and Liu, X.
(2023). Development and assessment of
scoring model for ICU stay and mortality
prediction after emergency admissions in
ischemic heart disease: a retrospective study of
MIMIC-IV databases. Intern. Emerg. Med. 18,
487–497.

39. Rajendram, M.F., Zarisfi, F., Xie, F., Shahidah,
N., Pek, P.P., Yeo, J.W., Tan, B.Y.Q., Ma, M., Do
Shin, S., Tanaka, H., et al. (2022). External
validation of the Survival after ROSC in Cardiac
Arrest (SARICA) score for predicting survival
after return of spontaneous circulation using
multinational pan-asian cohorts. Front. Med. 9,
930226. https://doi.org/10.3389/fmed.2022.
930226.

ll
OPEN ACCESS

22 STAR Protocols 4, 102302, June 16, 2023

Protocol

http://refhub.elsevier.com/S2666-1667(23)00269-1/sref6
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref6
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref6
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref6
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref6
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref6
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref7
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref7
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref7
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref7
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref7
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref8
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref8
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref8
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref8
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref8
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref8
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref8
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref9
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref9
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref9
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref9
https://doi.org/10.1503/cmaj.091117
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref11
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref11
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref11
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref11
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref11
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref11
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref11
https://doi.org/10.1136/esmoopen-2020-000670
https://doi.org/10.1136/esmoopen-2020-000670
https://doi.org/10.48550/arXiv.1702.08608
https://doi.org/10.48550/arXiv.1702.08608
https://doi.org/10.1186/s12911-020-01332-6
https://doi.org/10.1186/s12911-020-01332-6
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119057840.ch84
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119057840.ch84
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119057840.ch84
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref16
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref16
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref16
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref17
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref17
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref17
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref17
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref17
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref18
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref18
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref18
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref18
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref19
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref19
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref19
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref19
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref20
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref20
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref20
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref20
https://doi.org/10.48550/arXiv.1503.07810
https://doi.org/10.48550/arXiv.1503.07810
https://doi.org/10.1001/jamanetworkopen.2021.18467
https://doi.org/10.1001/jamanetworkopen.2021.18467
https://doi.org/10.1016/j.eclinm.2022.101315
https://doi.org/10.1016/j.eclinm.2022.101315
https://doi.org/10.1212/WNL.0000000000200553
https://doi.org/10.1212/WNL.0000000000200553
https://doi.org/10.1016/j.eclinm.2022.101422
https://doi.org/10.1016/j.eclinm.2022.101422
https://doi.org/10.1016/j.resuscitation.2021.11.029
https://doi.org/10.1016/j.resuscitation.2021.11.029
https://doi.org/10.1016/j.jbi.2022.104072
https://doi.org/10.1016/j.jbi.2022.104072
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref28
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref28
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref28
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref28
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref28
https://doi.org/10.1371/journal.pdig.0000062
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref30
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref30
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref30
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref30
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref30
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref31
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref31
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref31
https://doi.org/10.1038/s41596-021-00513-5
https://doi.org/10.1038/s41596-021-00513-5
https://doi.org/10.1007/s42979-021-00592-x
https://doi.org/10.1136/bmjinnov-2019-000359
https://doi.org/10.1136/bmjinnov-2019-000359
https://doi.org/10.1038/s41597-022-01782-9
https://doi.org/10.1038/s41597-022-01782-9
https://doi.org/10.1038/s41598-022-22233-w
https://doi.org/10.1038/s41598-022-11129-4
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref38
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref38
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref38
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref38
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref38
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref38
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref38
http://refhub.elsevier.com/S2666-1667(23)00269-1/sref38
https://doi.org/10.3389/fmed.2022.930226
https://doi.org/10.3389/fmed.2022.930226


40. Yu, J.Y., Heo, S., Xie, F., Liu, N., Yoon, S.Y.,
Chang, H.S., Kim, T., Lee, S.U., Ong, M.E.H.,
and Ng, Y.Y. (2023). Development and asian-
wide validation of the grade for interpretable
field triage (GIFT) for predicting mortality in
pre-hospital patients using the pan-asian
trauma outcomes study (PATOS). Lancet Reg.

Health West. Pac.. https://www.thelancet.com/
journals/lanwpc/article/PIIS2666-6065(23)
00051-2/fulltext

41. Kwok, S.W.H., Wang, G., Sohel, F., Kashani,
K.B., Zhu, Y., Wang, Z., Antpack, E.,
Khandelwal, K., Pagali, S.R., Nanda, S., et al.

(2023). An artificial intelligence approach for
predicting death or organ failure after
hospitalization for COVID-19: development of
a novel risk prediction tool and comparisons
with ISARIC-4C, CURB-65, qSOFA, and MEWS
scoring systems. Respir. Res. 24, 79. https://doi.
org/10.1186/s12931-023-02386-6.

ll
OPEN ACCESS

STAR Protocols 4, 102302, June 16, 2023 23

Protocol

https://www.thelancet.com/journals/lanwpc/article/PIIS2666-6065(23)00051-2/fulltext
https://www.thelancet.com/journals/lanwpc/article/PIIS2666-6065(23)00051-2/fulltext
https://www.thelancet.com/journals/lanwpc/article/PIIS2666-6065(23)00051-2/fulltext
https://doi.org/10.1186/s12931-023-02386-6
https://doi.org/10.1186/s12931-023-02386-6

	XPRO102302_proof_v4i2.pdf
	A universal AutoScore framework to develop interpretable scoring systems for predicting common types of clinical outcomes
	Before you begin
	Software prerequisites and data requirement
	Prepare a clinical question

	Key resources table
	Step-by-step method details
	Install the package and the prerequisites
	Data processing and checking
	Splitting data
	AutoScore step (i): Generate a variable ranking list
	AutoScore step (ii): Select the best model with a parsimony plot
	AutoScore step (iii): Generate initial scores with the final list of variables
	AutoScore step (iv): Fine-tune the initial score
	AutoScore step (v): Evaluate final risk scores on the test dataset
	Map score to risk

	Expected outcomes
	Limitations
	Troubleshooting
	Problem 1
	Potential solution
	Problem 2
	Potential solution
	Problem 3
	Potential solution
	Problem 4
	Potential solution
	Problem 5
	Potential solution

	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Acknowledgments
	Author contributions
	Declaration of interests
	References



